

Chapter – 1

Introduction

1.1 Computer Organization and Architecture
• Computer Architecture refers to those attributes of a system that have a direct impact on

the logical execution of a program. Examples:
o the instruction set
o the number of bits used to represent various data types
o I/O mechanisms
o memory addressing techniques

• Computer Organization refers to the operational units and their interconnections that
realize the architectural specifications. Examples are things that are transparent to the
programmer:

o control signals
o interfaces between computer and peripherals
o the memory technology being used

• So, for example, the fact that a multiply instruction is available is a computer architecture
issue. How that multiply is implemented is a computer organization issue.

• Architecture is those attributes visible to the programmer
o Instruction set, number of bits used for data representation, I/O mechanisms,

addressing techniques.
o e.g. Is there a multiply instruction?

• Organization is how features are implemented

o Control signals, interfaces, memory technology.
o e.g. Is there a hardware multiply unit or is it done by repeated addition?

• All Intel x86 family share the same basic architecture

• The IBM System/370 family share the same basic architecture

• This gives code compatibility

o At least backwards

• Organization differs between different versions

1.2 Structure and Function

• Structure is the way in which components relate to each other

• Function is the operation of individual components as part of the structure

• All computer functions are:
o Data processing: Computer must be able to process data which may take a wide

variety of forms and the range of processing.
o Data storage: Computer stores data either temporarily or permanently.
o Data movement: Computer must be able to move data between itself and the

outside world.
o Control: There must be a control of the above three functions.

Fig: Functional view of a computer

Fig: Data movement operation Fig: Storage Operation

Fig: Processing from / to storage Fig: Processing from storage to i/o

• Four main structural components:
o Central processing unit (CPU)
o Main memory
o I / O
o System interconnections

• CPU structural components:
o Control unit
o Arithmetic and logic unit (ALU)
o Registers

o CPU interconnections

Peripherals

Computer

Communication lines

Fig: Computer: Top level structure

Computer

Central
Main

Processing
Memory

Unit
 Systems

Interconnection

Input

Output

 CPU

 Arithmetic

Computer
Registers and

I/O

System
Login Unit

CPU

Bus Internal CPU

Memory

Interconnection

Control

Unit

Fig: The central processing unit

 Control Unit

CPU
Sequencing

ALU

Internal Control Login
Bus Control Unit

Unit

Registers Registers and

 Decoders

 Control

Fig: The control unit Memory

1.3 Designing for performance
Some of the driving factors behind the need to design for performance:

• Microprocessor Speed

• Pipelining
• On board cache, on board L1 & L2 cache
• Branch prediction: The processor looks ahead in the instruction code fetched from

memory and predicts which branches, or group of instructions are likely to be
processed next.

• Data flow analysis: The processor analyzes which instructions are dependent
on each other’s results, or data, to create an optimized schedule of instructions
to prevent delay.

• Speculative execution: Using branch prediction and data flow analysis, some
processors speculatively execute instructions ahead of their actual appearance in
the program execution, holding the results in temporary locations.

• Performance Mismatch

• Processor speed increased
• Memory capacity increased
• Memory speed lags behind processor speed

Below figure depicts the history; while processor speed and memory capacity have grown
rapidly, the speed with which data can be transferred between main memory and the processor
has lagged badly.

Fig: Evolution of DRAM and processor Characteristics

The effects of these trends are shown vividly in figure below. The amount of main memory
needed is going up, but DRAM density is going up faster (number of DRAM per system is going
down).

Fig: Trends in DRAM use

Solutions

• Increase number of bits retrieved at one time
o Make DRAM “wider” rather than “deeper” to use wide bus data paths.

• Change DRAM interface
o Cache

• Reduce frequency of memory access
o More complex cache and cache on chip

• Increase interconnection bandwidth
o High speed buses
o Hierarchy of buses

1.4 Computer Components

• The Control Unit (CU) and the Arithmetic and Logic Unit (ALU) constitute the Central
Processing Unit (CPU)

• Data and instructions need to get into the system and results need to get out
o Input/output (I/O module)

• Temporary storage of code and results is needed

o Main memory (RAM)

• Program Concept
o Hardwired systems are inflexible
o General purpose hardware can do different tasks, given correct control signals
o Instead of re-wiring, supply a new set of control signals

Fig: Hardware and Software Approaches

Fig: Computer Components; Top-Level View

1.5 Computer Function
The basic function performed by a computer is execution of a program, which consists of a set of
instructions stored in memory.

• Two steps of Instructions Cycle:
o Fetch

o Execute

Fig: Basic Instruction Cycle

• Fetch Cycle
o Program Counter (PC) holds address of next instruction to fetch
o Processor fetches instruction from memory location pointed to by PC
o Increment PC

� Unless told otherwise

o Instruction loaded into Instruction Register (IR)

• Execute Cycle
o Processor interprets instruction and performs required actions, such as:

� Processor - memory

o data transfer between CPU and main memory
� Processor - I/O

o Data transfer between CPU and I/O module
� Data processing

o Some arithmetic or logical operation on data
� Control

o Alteration of sequence of operations
o e.g. jump

� Combination of above

Example of program execution.

Fig: Example of program execution (consists of memory and registers in hexadecimal)

• The PC contains 300, the address of the first instruction. The instruction (the value 1940
in hex) is loaded into IR and PC is incremented. This process involves the use of MAR
and MBR.

• The first hexadecimal digit in IR indicates that the AC is to be loaded. The remaining
three hexadecimal digits specify the address (940) from which data are to be loaded.

• The next instruction (5941) is fetched from location 301 and PC is incremented.

• The old contents of AC and the contents of location 941 are added and the result is stored
in the AC.

• The next instruction (2941) is fetched from location 302 and the PC is incremented.

• The contents of the AC are stored in location 941.

Fig: Instruction cycle state diagram

Interrupts:
• Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of

processing

• Program

o e.g. overflow, division by zero

• Timer
o Generated by internal processor timer
o Used in pre-emptive multi-tasking

• I/O

o from I/O controller

• Hardware failure
o e.g. memory parity error

• Instruction Cycle
o Added to instruction cycle
o Processor checks for interrupt

� Indicated by an interrupt signal
o If no interrupt, fetch next instruction o
If interrupt pending:

� Suspend execution of current program

� Save context

� Set PC to start address of interrupt handler routine

� Process interrupt

� Restore context and continue interrupted program

Fig: Instruction Cycle with Interrupts

Fig: Instruction cycle state diagram, with interrupts

• Multiple Interrupts
o Disable interrupts (approach #1)

� Processor will ignore further interrupts whilst processing one interrupt

� Interrupts remain pending and are checked after first interrupt has been processed

� Interrupts handled in sequence as they occur

o Define priorities (approach #2)
� Low priority interrupts can be interrupted by higher priority interrupts

� When higher priority interrupt has been processed, processor returns to previous
interrupt

1.6 Interconnection structures
The collection of paths connecting the various modules is called the interconnecting structure.

• All the units must be connected
• Different type of connection for different type of unit

o Memory
o Input/Output
o CPU

• Memory Connection

o Receives and sends data
o Receives addresses (of locations)
o Receives control signals

� Read

� Write

� Timing

Fig: Memory Module

• I/O Connection
o Similar to memory from computer’s viewpoint
o Output

� Receive data from computer

� Send data to peripheral

o Input
� Receive data from peripheral

� Send data to computer

o Receive control signals from computer
o Send control signals to peripherals

� e.g. spin disk

o Receive addresses from computer
� e.g. port number to identify peripheral o

Send interrupt signals (control)

Fig: I/O Module

• CPU Connection

o Reads instruction and data
o Writes out data (after processing)
o Sends control signals to other units

o Receives (& acts on) interrupts

Fig: CPU Module

1.7 Bus interconnection

• A bus is a communication pathway connecting two or more devices

• Usually broadcast (all components see signal)

• Often grouped

o A number of channels in one bus
o e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown

• There are a number of possible interconnection systems

• Single and multiple BUS structures are most common

• e.g. Control/Address/Data bus (PC)

• e.g. Unibus (DEC-PDP)

• Lots of devices on one bus leads to:
o Propagation delays
o Long data paths mean that co-ordination of bus use can adversely affect

performance
o If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to overcome these problems

Fig: Bus Interconnection Scheme

• Data Bus
o Carries data

� Remember that there is no difference between “data” and “instruction” at this
level

o Width is a key determinant of performance
� 8, 16, 32, 64 bit

• Address Bus
o Identify the source or destination of data
o e.g. CPU needs to read an instruction (data) from a given location in memory
o Bus width determines maximum memory capacity of system

� e.g. 8080 has 16 bit address bus giving 64k address space

• Control Bus
o Control and timing information

� Memory read

� Memory write

� I/O read

� I/O write

� Transfer ACK

� Bus request

� Bus grant

� Interrupt request

� Interrupt ACK

� Clock

� Reset

Central Processing Unit

The part of the computer that performs the bulk of data processing operations is called the Central

Processing Unit (CPU) and is the central component of a digital computer. Its purpose is to

interpret instruction cycles received from memory and perform arithmetic, logic and control

operations with data stored in internal register, memory words and I/O interface units. A CPU is

usually divided into two parts namely processor unit (Register Unit and Arithmetic Logic Unit)

and control unit.

Fig: Components of CPU

Processor Unit:
The processor unit consists of arithmetic unit, logic unit, a number of registers and internal buses

that provides data path for transfer of information between register and arithmetic logic unit. The
block diagram of processor unit is shown in figure below where all registers are connected

through common buses. The registers communicate each other not only for direct data transfer but
also while performing various micro-operations.

Here two sets of multiplexers select register which perform input data for ALU. A decoder selects
destination register by enabling its load input. The function select in ALU determines the

particular operation that to be performed.

For an example to perform the operation: R3
�

 R1 + R2

� MUX A selector (SELA): to place the content of R1 into bus A.

� MUX B selector (SELB): to place the content of R2 into bus B.
� ALU operation selector (OPR): to provide arithmetic addition A + B.

� Decoder destination selector (SELD): to transfer the content of the output bus into R3.

Control unit:
The control unit is the heart of CPU. It consists of a program counter, instruction register, timing

and control logic. The control logic may be either hardwired or micro-programmed. If it is a

hardwired, register decodes and a set of gates are connected to provide the logic that determines

the action required to execute various instructions. A micro-programmed control unit uses a

control memory to store micro instructions and a sequence to determine the order by which the

instructions are read from control memory.

The control unit decides what the instructions mean and directs the necessary data to be moved

from memory to ALU. Control unit must communicate with both ALU and main memory and
coordinates all activities of processor unit, peripheral devices and storage devices. It can be

characterized on the basis of design and implementation by:

� Defining basic elements of the processor
� Describing the micro-operation that processor performs
� Determining the function that the control unit must perform to cause the micro-operations

to be performed.
Control unit must have inputs that allow determining the state of system and outputs that allow

controlling the behavior of system.

The input to control unit are:

Flag: flags are headed to determine the status of processor and outcome of previous ALU
operation.

� Clock: All micro-operations are performed within each clock pulse. This clock pulse is

also called as processor cycle time or clock cycle time.

� Instruction Register: The op-code of instruction determines which micro-operation to

perform during execution cycle.

� Control signal from control bus: The control bus portion of system bus provides interrupt,

acknowledgement signals to control unit.

The outputs from control unit are:

� Control signal within processor: These signals causes data transfer between registers,

activate ALU functions.

� Control signal to control bus: These are signals to memory and I/O module. All these

control signals are applied directly as binary inputs to individual logic gate.

CPU Structure and Function

Processor Organization

� Things a CPU must do:
 Fetch Instructions
 Interpret Instructions

 Fetch Data

 Process Data

 Write Data

Fig: The CPU with the System Bus
π A small amount of internal memory, called the registers, is needed by the CPU to fulfill

these requirements

Fig: Internal Structure of the CPU

π Components of the CPU
 Arithmetic and Logic Unit (ALU): does the actual computation or processing of

data
 Control Unit (CU): controls the movement of data and instructions into and out of

the CPU and controls the operation of the ALU.

Register Organization

π Registers are at top of the memory hierarchy. They serve two functions:

 User-Visible Registers - enable the machine- or assembly-language programmer to
minimize main-memory references by optimizing use of registers

 Control and Status Registers - used by the control unit to control the operation

User-Visible Registers
Categories of Use

p General Purpose registers - for variety of functions

q Data registers - hold data

r Address registers - hold address information

s Segment pointers - hold base address of the segment in use

t Index registers - used for indexed addressing and may be auto indexed
u Stack Pointer - a dedicated register that points to top of a stack. Push, pop, and

other stack instructions need not contain an explicit stack operand.
v Condition Codes (flags)

Design Issues

� Completely general-purpose registers or specialized use?
 Specialized registers save bits in instructions because their use can be implicit
 General-purpose registers are more flexible

 Trend is toward use of specialized registers
� Number of registers provided?

 More registers require more operand specifier bits in instructions
 8 to 32 registers appears optimum (RISC systems use hundreds, but are a

completely different approach)
� Register Length?

 Address registers must be long enough to hold the largest address
 Data registers should be able to hold values of most data types

 Some machines allow two contiguous registers for double-length values
� Automatic or manual save of condition codes?

 Condition restore is usually automatic upon call return
 Saving condition code registers may be automatic upon call instruction, or may be

manual

Control and Status Registers

� Essential to instruction execution
o Program Counter (PC)

o Instruction Register (IR)
o Memory Address Register (MAR) - usually connected directly to address lines

of bus
o Memory Buffer Register (MBR) - usually connected directly to data lines of bus

� Program Status Word (PSW) - also essential, common fields or flags contained
include:
• Sign - sign bit of last arithmetic operation

• Zero - set when result of last arithmetic operation is 0

• Carry - set if last op resulted in a carry into or borrow out of a high-order bit

• Equal - set if a logical compare result is equality

• Overflow - set when last arithmetic operation caused overflow

• Interrupt Enable/Disable - used to enable or disable interrupts

• Supervisor - indicates if privileged ops can be used

� Other optional registers
o Pointer to a block of memory containing additional status info (like process

control blocks)

p An interrupt vector

q A system stack pointer

r A page table pointer

s I/O registers
� Design issues

o Operating system support in CPU
• How to divide allocation of control information between CPU registers and first

part of main memory (usual tradeoffs apply)

The Instruction Cycle
Basic instruction cycle contains the following sub-cycles.

� Fetch - read next instruction from memory into CPU
� Execute - Interpret the opcode and perform the indicated operation
� Interrupt - if interrupts are enabled and one has occurred, save the current process

state and service the interrupt

The Indirect Cycle
• Think of as another instruction sub-cycle

• May require just another fetch (based upon last fetch)

• Might also require arithmetic, like indexing

Fig: Instruction Cycle with Indirect

Arithmetic and Logic Unit
ALU is the combinational circuit of that part of computer that actually performs arithmetic and

logical operations on data. All of the other elements of computer system- control unit, registers,

memory, I/O are their mainly to bring data into the ALU for it to process and then to take the

result back out. An ALU & indeed all electronic components in computer are based on the use of

simple digital logic device that can store binary digit and perform simple Boolean logic function.

Figure indicates in general in general term how ALU is interconnected with rest of the processor.

Data are presented to ALU in register and the result of operation is stored in register. These
registers are temporarily storage location within the processor that are connected by signal path

to the ALU. The ALU may also set flags as the result of an operation. The flags values are also
stored in registers within the processor. The control unit provides signals that control the

operation of ALU and the movement of data into an out of ALU.

The design of ALU has three stages.
o Design the arithmetic section

The basic component of arithmetic circuit is a parallel adder which is constructed with a
number of full adder circuits connected in cascade. By controlling the data inputs to the

parallel adder, it is possible to obtain different types of arithmetic operations. Below
figure shows the arithmetic circuit and its functional table.

Fig: Block diagram of Arithmetic Unit

Functional table for arithmetic unit:

Select Input Output Microoperation

S1 S0 Y Cin = 0 Cin = 1 Cin = 0 Cin = 1

0 0 0 A A+1 Transfer A Increment A

0 1 B A+B A+B+1 Addition Addition with

 carry

1 0 B’ A+B’ A+B’+1 Subtraction with Subtraction
 borrow

1 1 -1 A-1 A Decrement A Transfer A

• Design the logical section
The basic components of logical circuit are AND, OR, XOR and NOT gate circuits

connected accordingly. Below figure shows a circuit that generates four basic logic

micro-operations. It consists of four gates and a multiplexer. Each of four logic
operations is generated through a gate that performs the required logic. The two selection

input S1 and S0 choose one of the data inputs of the multiplexer and directs its value to
the output. Functional table lists the logic operations.

Ai
Bi

4 X 1

MUX
Ei

S0 S1

Fig: Block diagram of Logic Unit

Functional table for logic unit:

S1 S0 output Microoperation

0 0 Ai && Bi AND

0 1 Ai || Bi OR

1 0 Ai XOR Bi XOR

1 1 Ai’ NOT

• Combine these 2 sections to form the ALU
Below figure shows a combined circuit of ALU where n data
input from A are combined with n data input from B to
generate the result of an operation at the G output line. ALU
has a number of selection lines used to determine the
operation to be performed. The selection lines are decoded
with the ALU so that selection lines can specify distinct

operations. The mode select S2 differentiate between
arithmetic and logical operations. The two functions select

S1 and S0 specify the particular arithmetic and logic
operations to be performed. With three selection lines, it is

possible to specify arithmetic operation with S2 at 0 and

logical operation with S2 at 1.

Fig: Block diagram of ALU

Instruction Formats
The computer can be used to perform a specific task, only by specifying the necessary steps to

complete the task. The collection of such ordered steps forms a ‘program’ of a computer. These

ordered steps are the instructions. Computer instructions are stored in central memory locations

and are executed sequentially one at a time. The control reads an instruction from a specific

address in memory and executes it. It then continues by reading the next instruction in sequence

and executes it until the completion of the program.

A computer usually has a variety of Instruction Code Formats. It is the function of the control unit
within the CPU to interpret each instruction code and provide the necessary control functions
needed to process the instruction. An n bit instruction that k bits in the address field and m bits in
the operation code field come addressed 2

k
 location directly and specify 2

m
 different operation.

π The bits of the instruction are divided into groups called fields.
θ The most common fields in instruction formats are:

• An Operation code field that specifies the operation to be performed.
• An Address field that designates a memory address or a processor

register.
p A Mode field that specifies the way the operand or the effective address is

determined.

n-1 m-1 k-1 0

 Fig: Instruction format with mode field
The operation code field (Opcode) of an instruction is a group of bits that define various

processor operations such as add, subtract, complement, shift etcetera. The bits that define the

mode field of an instruction code specify a variety of alternatives for choosing the operands from

the given address. Operation specified by an instruction is executed on some data stored in the

processor register or in the memory location. Operands residing in memory are specified by their

memory address. Operands residing in processor register are specified with a register address.

Types of Instruction
π Computers may have instructions of several different lengths containing varying

number of addresses.
θ The number of address fields in the instruction format of a computer depends on

the internal organization of its registers.
ρ Most computers fall into one of 3 types of CPU organizations:

Single accumulator organization:- All the operations are performed with an

accumulator register. The instruction format in this type of computer uses one address

field. For example: ADD X, where X is the address of the operands .

General register organization:- The instruction format in this type of computer needs

three register address fields. For example: ADD R1,R2,R3

Stack organization:- The instruction in a stack computer consists of an operation code

with no address field. This operation has the effect of popping the 2 top numbers from the

stack, operating the numbers and pushing the sum into the stack. For example: ADD

Computers may have instructions of several different lengths containing varying number of
addresses. Following are the types of instructions.

1) Three address Instruction
With this type of instruction, each instruction specifies two operand location and a result
location. A temporary location T is used to store some intermediate result so as not to
alter any of the operand location. The three address instruction format requires a very
complex design to hold the three address references.

Format: Op X, Y, Z; X
�

 Y Op Z

Example: ADD X, Y, Z; X
�

 Y + Z

 ADVANTAGE: It results in short programs when evaluating arithmetic
expressions.

 DISADVANTAGE: The instructions requires too many bits to specify 3
addresses.

• Two address instruction

Two-address instructions are the most common in commercial computers. Here

again each address field can specify either a processor register, or a memory word.

One address must do double duty as both operand and result. The two address

instruction format reduces the space requirement. To avoid altering the value of an

operand, a MOV instruction is used to move one of the values to a result or

temporary location T, before performing the operation.

Format: Op X, Y; X
�

 X Op Y

Example: SUB X, Y; X
�

 X - Y

2) One address Instruction
It was generally used in earlier machine with the implied address been a CPU

register known as accumulator. The accumulator contains one of the operand and is
used to store the result. One-address instruction uses an implied accumulator (Ac)

register for all data manipulation. All operations are done between the AC register
and a memory operand. We use LOAD and STORE instruction for transfer to and

from memory and Ac register.
Format: Op X; Ac

�
 Ac Op X

Example: MUL X; Ac
�

 Ac * X

3) Zero address Instruction
It does not use address field for the instruction like ADD, SUB, MUL, DIV etc.
The PUSH and POP instructions, however, need an address field to specify the

operand that communicates with the stack. The name “Zero” address is given
because of the absence of an address field in the computational instruction.
Format: Op; TOS

�
 TOS Op (TOS – 1)

Example: DIV; TOS
�

 TOS DIV (TOS – 1)

Example: To illustrate the influence of the number of address on computer programs, we
will evaluate the arithmetic statement X=(A+B)*(C+D) using Zero, one, two, or three
address instructions.

1. Three-Address Instructions:

ADD R1, A, B; R1 � M[A] + M[B]

ADD R2, C, D; R2 � M[C] + M[D]

MUL X, R1,R2; M[X] � R1 * R2
It is assumed that the computer has two processor registers R1 and R2. The symbol M[A]
denotes the operand at memory address symbolized by A.

2. Two-Address Instructions:

MOV R1, A; R1
�

 M[A]

ADD R1, B; R1
�

 R1 + M[B]

MOV R2, C; R2
�

 M[C]

ADD R2, D; R2
�

 R2 + M[D]

MUL R1, R2; R1
�

R1*R2

MOV X, R1; M[X]
�

 R1

3. One-Address Instruction:

LOAD A; Ac
�

 M[A]

ADD B; Ac
�

 Ac + M[B]

STORE T; M[T]
�

 Ac

LOAD C; Ac
�

 M[C]

ADD D; Ac
�

 Ac + M[D]

MUL T; Ac
�

 Ac * M[T]

STORE X; M[X]
�

 Ac
Here, T is the temporary memory location required for storing the intermediate result.

4. Zero-Address Instructions:

PUSH A; TOS
�

A

PUSH B; TOS
�

B

ADD; TOS
�

(A+B)

PUSH C; TOS
�

C

PUSH D; TOS
�

D

ADD; TOS
�

(C+D)

MUL; TOS
�

(C+D)*(A+B)

POPX; M[X]
�

 TOS

2.4 Addressing Modes

♣ Specifies a rule for interpreting or modifying the address
field of the instruction before the operand is actually
referenced.

♣ Computers use addressing mode techniques for the purpose
of accommodating the following purposes:-

o To give programming versatility to the user by
providing such facilities as pointers to memory,
counters for loop control, indexing of data and
various other purposes.

o To reduce the number of bits in the addressing field of the
instructions.
� Other computers use a single binary for operation & Address mode.

� The mode field is used to locate the operand.

� Address field may designate a memory address or a processor register.

� There are 2 modes that need no address field at all

(Implied & immediate modes).

Effective address (EA):
♣ The effective address is defined to be the memory address

obtained from the computation dictated by the given
addressing mode.

The effective address is the address of the operand in a computational-type instruction

The most well known addressing mode are:

� Implied Addressing Mode.
� Immediate Addressing Mode
� Register Addressing Mode
� Register Indirect Addressing Mode
� Auto-increment or Auto-decrement Addressing Mode
� Direct Addressing Mode
� Indirect Addressing Mode
� Displacement Address Addressing Mode
� Relative Addressing Mode
� Index Addressing Mode
� Stack Addressing Mode

Implied Addressing Mode:

� In this mode the operands are specified implicitly in the definition of the instruction.
For example:- CMA - “complement accumulator” is an implied-mode instruction because

the operand in the accumulator register is implied in the definition of the instruction. In
fact, all register reference instructions that use an accumulator are implied-mode

instructions.

Instruction
Opcode

Advantage: no memory reference. Disadvantage: limited operand

Immediate Addressing mode:

� In this mode the operand is specified in the instruction itself. In other words, an
immediate-mode instruction has an operand field rather than an address field.

� This instruction has an operand field rather than an address field. The operand field
contains the actual operand to be used in conjunction with the operation specified in the
instruction.

� These instructions are useful for initializing register to a constant value;
For example MVI B, 50H

Instruction

Opcode Operand

It was mentioned previously that the address field of an instruction may specify either a memory
word or a processor register. When the address field specifies a processor register, the instruction
is said to be in register-mode.
Advantage: no memory reference. Disadvantage: limited operand

Register direct addressing mode:

� In this mode, the operands are in registers that reside within the CPU.
The particular register is selected from the register field in the instruction. For example MOV A,
B

Opcode Register Register

Operand

Effective Address (EA) = R

Advantage: no memory reference. Disadvantage: limited address space

Register indirect addressing mode:
� In this mode the instruction specifies a register in the CPU whose contents give the

address of the operand in the memory.
� In other words, the selected register contains the address of the operand rather than the

operand itself.
� Before using a register indirect mode instruction, the programmer must ensure that the

memory address of the operand is placed in the processor register with a previous
instruction.
For example LDAX B

Instruction
Opcode Register Register

Memory

Operand

Effective Address (EA) = (R)

Advantage: Large address space.

The address field of the instruction uses fewer bits to select a register than would have been

required to specify a memory address directly.

Disadvantage: Extra memory reference

Auto increment or Auto decrement Addressing Mode:

� This is similar to register indirect mode except that the register is incremented or
decremented after (or before) its value is used to access memory.

� When the address stored in the registers refers to a table of data in memory, it is
necessary to increment or decrement the registers after every access to the table.

� This can be achieved by using the increment or decrement instruction. In some computers
it is automatically accessed.

� The address field of an instruction is used by the control unit in the CPU to obtain the
operands from memory.

� Sometimes the value given in the address field is the address of the operand, but
sometimes it is the address from which the address has to be calculated.

Direct Addressing Mode

π In this mode the effective address is equal to the address part of the instruction. The
operand resides in memory and its address is given directly by the address field of the
instruction.
For example LDA 4000H

Instruction
Opcode Address Memory

 Operand

Effective Address (EA) = A

Advantage: Simple. Disadvantage: limited address field

Indirect Addressing Mode
π In this mode the address field of the instruction gives the address where the effective

address is stored in memory.
θ Control unit fetches the instruction from the memory and uses its address part to access

memory again to read the effective address.

Instruction
Opcode Address Memory

Operand

Effective Address (EA) = (A)

Advantage: Flexibility. Disadvantage: Complexity

Displacement Addressing Mode
� A very powerful mode of addressing combines the capabilities of direct addressing

and register indirect addressing.
� The address field of instruction is added to the content of specific register in the CPU.

Instruction

Opcode R A

Register Memory

+ Operand

Effective Address (EA) = A + (R) Advantage: Flexibility.

Disadvantage: Complexity

Relative Addressing Mode

π In this mode the content of the program counter (PC) is added to the address part of the
instruction in order to obtain the effective address.

θ The address part of the instruction is usually a signed number (either a +ve or a –ve
number).

ρ When the number is added to the content of the program counter, the result produces an
effective address whose position in memory is relative to the address of the next
instruction.
Effective Address (EA) = PC + A

Indexed Addressing Mode

π In this mode the content of an index register (XR) is added to the address part of the
instruction to obtain the effective address.

θ The index register is a special CPU register that contains an index value.
ρ Note: If an index-type instruction does not include an address field in its format, the

instruction is automatically converted to the register indirect mode of operation. Effective
Address (EA) = XR + A

Base Register Addressing Mode
� In this mode the content of a base register (BR) is added to the address part of the

instruction to obtain the effective address.
� This is similar to the indexed addressing mode except that the register is now called a

base register instead of the index register.
� The base register addressing mode is used in computers to facilitate the relocation of

programs in memory i.e. when programs and data are moved from one segment of
memory to another.
Effective Address (EA) = BR + A

Stack Addressing Mode
� The stack is the linear array of locations. It is some times referred to as push down list or

last in First out (LIFO) queue. The stack pointer is maintained in register.
Instruction

Implicit
Top of Stack

Effective Address (EA) = TOS

RISC and CISC

π Important aspect of computer – design of the instruction set for processor.
θ Instruction set – determines the way that machine language programs are

constructed.
ρ Early computers – simple and small instruction set, need to minimize the

hardware used.
σ Advent of IC – cheaper digital software, instructions intended to increase both in

number of complexity.

τ Many computers – more than 100 or 200 instructions, variety of data types and
large number of addressing modes.

Complex Instruction Set Computers (CISC)

π The trend into computer hardware complexity was influenced by various factors: o
Upgrading existing models to provide more customer applications
o Adding instructions that facilitate the translation from high-level language

into machine language programs
o Striving to develop machines that move functions from software

implementation into hardware implementation
θ A computer with a large number of instructions is classified as a complex

instruction set computer (CISC).
One reason for the trend to provide a complex instruction set is the desire to simplify the
compilation and improve the overall computer performance.

π The essential goal of CISC architecture is to attempt to provide a single machine
instruction for each statement that is written in a high-level language.

θ Examples of CISC architecture are the DEC VAX computer and the IBM 370
computer. Other are 8085, 8086, 80x86 etc.

The major characteristics of CISC architecture

ρ A large number of instructions– typically from 100 to 250 instructions
σ Some instructions that perform specialized tasks and are used infrequently
τ A large variety of addressing modes—typically from 5 to 20 different modes
υ Variable-length instruction formats
ϖ Instructions that manipulate operands in memory
ω Reduced speed due to memory read/write operations
ξ Use of microprogram – special program in control memory of a computer to

perform the timing and sequencing of the microoperations – fetch, decode,
execute etc.

ψ Major complexity in the design of microprogram
ζ No large number of registers – single register set of general purpose and low cost

Reduced Instruction Set Computers (RISC)
A computer uses fewer instructions with simple constructs so they can be executed much
faster within the CPU without having to use memory as often. It is classified as a reduced
instruction set computer (RISC).

π RISC concept – an attempt to reduce the execution cycle by simplifying the
instruction set

θ Small set of instructions – mostly register to register operations and simple
load/store operations for memory access

ρ Each operand – brought into register using load instruction, computations are
done among data in registers and results transferred to memory using store
instruction

σ Simplify instruction set and encourages the optimization of register
manipulation

τ May include immediate operands, relative mode etc.

The major characteristics of RISC architecture

� Relatively few instructions
� Relatively few addressing modes
� Memory access limited to load and store instructions

� All operations done within the registers of the CPU
� Fixed-length, easily decoded instruction format
� Single-cycle instruction execution
� Hardwired rather than microprogrammed control

Other characteristics attributed to RISC architecture

π A relatively large number of registers in the processor unit
θ Use of overlapped register windows to speed-up procedure call and return
ρ Efficient instruction pipeline – fetch, decode and execute overlap
σ Compiler support for efficient translation of high-level language programs into

machine language programs
τ Studies that show improved performance for RISC architecture do not

differentiate between the effects of the reduced instruction set and the effects of
a large register file.

υ A large number of registers in the processing unit are sometimes associated with
RISC processors.

ϖ RISC processors often achieve 2 to 4 times the performance of CISC processors.
ω RISC uses much less chip space; extra functions like memory management unit

or floating point arithmetic unit can also be placed on same chip. Smaller chips
allow a semiconductor mfg. to place more parts on a single silicon wafer, which
can lower the per chip cost dramatically.

ξ RISC processors are simpler than corresponding CISC processors, they can be
designed more quickly.

Comparison between RISC and CISC Architectures

S.N. RISC CISC

1 Simple instructions taking one cycle Complex instructions taking multiple cycles

2 Only load and store memory references Any instructions may reference memory

3 Heavily pipelined Not/less pipelined

4 Multiple register sets Single register set

5 Complexity is in compiler Complexity is in micro-programming

6 Instructions executed by hardware Instructions interpreted by micro-

 programming

7 Fixed format instructions Variable format instructions

8 Few instructions and modes Large instructions and modes

Computer Arithmetic

Integer Representation: (Fixed-point representation):
An eight bit word can be represented the numbers from zero to 255 including
00000000 = 0

00000001 = 1

11111111 = 255

In general if an n-bit sequence of binary digits an-1, an-2 …..a1, a0; is interpreted as unsigned
integer A.

n−1

A =
 ∑ 2

i
ai

i =0

Sign magnitude representation:

There are several alternative convention used to represent negative as well as positive integers,

all of which involves treating the most significant (left most) bit in the word as sign bit. If the

sign bit is 0, the number is +ve and if the sign bit is 1, the number is –ve. In n bit word the right

most n-1 bit hold the magnitude of integer.

For an example,

+18 = 00010010

- 18 = 10010010 (sign magnitude)

The general case can be expressed as follows:
n−2

A =
 ∑ 2

i
ai if an-1 = 0

i =0

n−2
= -

 ∑ 2
i
ai if an-1 =1

i =0

 n−2

A = -2
n-1

 an-1 + ∑ 2
i
ai (Both for +ve and –ve)

i =0
There are several drawbacks to sign-magnitude representation. One is that addition or subtraction

requires consideration of both signs of number and their relative magnitude to carry out the

required operation. Another drawback is that there are two representation of zero. For an
example:

+010 = 00000000

-010 = 10000000 this is inconvenient.

2’s complement representation:
Like sign magnitude representation, 2’s complement representation uses the most significant bit
as sign bit making it easy to test whether the integer is negative or positive. It differs from the
use of sign magnitude representation in the way that the other bits are interpreted. For negation,
take the Boolean complement (1’s complement) of each bit of corresponding positive number,
and then add one to the resulting bit pattern viewed as unsigned integer. Consider n bit integer A

in 2’s complement representation. If A is +ve then the sign bit an-1 is zero. The remaining bits

represent the magnitude of the number.

n−2

A = ∑ 2
i
ai for A ≥ 0

i =0
The number zero is identified as +ve and therefore has zero sign bit
and magnitude of all 0’s. We can see that the range of +ve integer

that may be represented is from 0 (all the magnitude bits are zero)

through 2
n-1

-1 (all of the magnitude bits are 1).
Now for –ve number integer A, the sign bit an-1 is 1. The
range of –ve integer that can be represented is from -1 to -
2

n-1

n−2

2’s complement, A = -2
n-1

 an-1 + ∑ 2
i
ai

i =0
Defines the twos complement of representation of both positive and negative

number.

For an example:

+18 = 00010010
1’s complement = 11101101

2’s complement = 11101110 = -18

5.1 Addition Algorithm

5.2 Subtraction Algorithm

1001 = -7 1100 = -4 0011 = 3
0101 = +5 0100 = +4 0100= 4

1110 =-2 10000 = 0 0111= 7
(a) (-7)+(+5) (b) (-4)+(4) (c) (+3)+(+4)

1100 = -4 0101 =5 1001 = -7
1111 = -1 0100 =4 1010 = -6

11011 = -5 1001=overflow 10011 = overflow
(d) (-4)+(-1) (e) (+5)+(+4) (f) (-7)+(-6)

The first four examples illustrate successful operation if the result of

the operation is +ve then we get +ve number in ordinary binary

notation. If the result of the operation is –ve we get negative number

in twos complement form. Note that in some instants there is carry

bit beyond the end of what which is ignored. On any addition the

result may larger then can be held in word size being use. This

condition is called over flow. When overflow occur ALU must

signal this fact so that no attempt is made to use the result. To detect

overflow the following rule observed. If two numbers are added,

and they are both +ve or both –ve; then overflow occurs if and only

if the result has the opposite sign.

The data path and hardware elements needed to accomplish addition and subtraction is shown in
figure below. The central element is binary adder, which is presented two numbers for addition
and produces a sum and an overflow indication. The binary adder treats the two numbers as
unsigned integers. For addition, the two numbers are presented to the adder from two registers A
and B. The result may be stored in one of these registers or in the third. The overflow indication is
stored in a 1-bit overflow flag V (where 1 = overflow and 0 = no overflow). For subtraction, the
subtrahend (B register) is passed through a 2’s complement unit so that its 2’s complement is
presented to the adder (a – b = a + (-b)).

Multiplication Algorithm
The multiplier and multiplicand bits are loaded into two registers Q and M. A third register A is
initially set to zero. C is the 1-bit register which holds the carry bit resulting from addition. Now,

the control logic reads the bits of the multiplier one at a time. If Q0 is 1, the multiplicand is added
to the register A and is stored back in register A with C bit used for carry. Then all the bits of

CAQ are shifted to the right 1 bit so that C bit goes to An-1, A0 goes to Qn-1 and Q0 is lost. If Q0
is 0, no addition is performed just do the shift. The process is repeated for each bit of the original
multiplier. The resulting 2n bit product is contained in the QA register.

Fig: Block diagram of multiplication

There are three types of operation for multiplication.

� It should be determined whether a multiplier bit is 1 or 0 so that it can designate the
partial product. If the multiplier bit is 0, the partial product is zero; if the multiplier bit is
1, the multiplicand is partial product.

� It should shift partial product.
� It should add partial product.

Unsigned Binary Multiplication
1011 Multiplicand 11

X 1101 Multiplier 13

1011
0000 Partial Product

1011
• 1011

10001111 Product (143)

 Start

M
ß

 Multiplicand, Q
ß

 Multiplier

C, A
ß

 0, Count
ß

 No. of bits of Q

No
Is

Yes

Q0=1 A
ß

A+M

 ?

 Right Shift C, A, Q
 Count ß Count - 1

 NO Is
 Count = 0
 ?

 STOP
 RESULT IN Q

 Example: Multiply 15 X 11 using unsigned binary method

 C A Q M Count Remarks

 0 0000 101 1 1111 4 Initialization

 0 1111 1011 - - Add (A
ß

 A + M)

 0 0111 110 1 - 3 Logical Right Shift C, A, Q

 1 0110 1101 - - Add (A
ß

 A + M)

 0 1011 011 0 - 2 Logical Right Shift C, A, Q

 0 0101 101 1 - 1 Logical Right Shift C, A, Q

 1 0100 1011 - - Add (A
ß

 A + M)

 0 1010 0101 - 0 Logical Right Shift C, A, Q

Result = 1010 0101 = 2
7
 + 2

5
 + 2

2
 + 2

0
 = 165

Alternate Method of Unsigned Binary Multiplication

Start

X
ß

 Multiplicand, Y
ß

 Multiplier

Sum
ß

 0, Count
ß

 No. of bits of Y

No
Is

Yes

Y0=1 Sum
ß

 Sum + X

 ?

 Left Shift X, Right

 Shift Y

 Count
ß

 Count - 1

No
Is

Count = 0

 ?

 Yes

 Stop Result in Sum

Algorithm:
Step 1: Clear the sum (accumulator A). Place the multiplicand in X and multiplier in Y.

Step 2: Test Y0; if it is 1, add content of X to the accumulator A.
Step 3: Logical Shift the content of X left one position and content of Y right one position.
Step 4: Check for completion; if not completed, go to step 2.

Example: Multiply 7 X 6

Sum X Y Count Remarks

000000 000111 11 0 3 Initialization

000000 001110 01 1 2 Left shift X, Right Shift Y

001110 011100 00 1 1 Sum
ß

 Sum + X,

 Left shift X, Right Shift Y

101010 111000 000 0 Sum
ß

 Sum + X,

 Left shift X, Right Shift Y

Result = 101010 = 2
5
 + 2

3
 + 2

1
 = 42

Signed Multiplication (Booth Algorithm) – 2’s Complement Multiplication
Multiplier and multiplicand are placed in Q and M register respectively. There is also one bit register

placed logically to the right of the least significant bit Q0 of the Q register and designated as Q-1.

The result of multiplication will appear in A and Q resister. A and Q-1 are initialized to zero if two

bits (Q0 and Q-1) are the same (11 or 00) then all the bits of A, Q and Q-1 registers are shifted to the
right 1 bit. If the two bits differ then the multiplicand is added to or subtracted from the A register
depending on weather the two bits are 01 or 10. Following the addition or subtraction the arithmetic
right shift occurs. When count reaches to zero, result resides into AQ in the form of signed integer [-

2
n-1

*an-1 + 2
n-2

*an-2 + …………… + 2
1
*a1 + 2

0
*a0].

Example: Multiply 9 X -3 = -27 using Booth
Algorithm +3 = 00011, -3 = 11101 (2’s
complement of +3)

A Q

Q-1 Add (M)

Count Remarks

Sub (M +1)

00000 1110 1 0 01001 10111 5 Initialization

10111 11101 0 - - - Sub (A
ß

 A - M) as Q0Q-1 = 10

11011 1111 0 1 - - 4 Arithmetic Shift Right A, Q, Q-1

00100 11110 1 - - - Add (A
ß

 A + M) as Q0Q-1 = 01

00010 0111 1 0 - - 3 Arithmetic Shift Right A, Q, Q-1

11001 01111 0 - - - Sub (A
ß

 A - M) as Q0Q-1 = 10

11100 1011 1 1 - - 2 Arithmetic Shift Right A, Q, Q-1

11110 0101 1 1 - - 1 Arithmetic Shift Right A, Q, Q-1

 as Q0Q-1 = 11

11111 00101 1 - - 0 Arithmetic Shift Right A, Q, Q-1

 as Q0Q-1 = 11

Result in AQ = 11111 00101 = -2
9
+2

8
+2

7
+2

6
+2

5
+2

2
+2

0
 = -512+256+128+64+32+4+1 = -27

5.4 Division Algorithm
Division is somewhat more than multiplication but is based on the
same general principles. The operation involves repetitive shifting
and addition or subtraction.

First, the bits of the dividend are examined from left to right, until

the set of bits examined represents a number greater than or equal to

the divisor; this is referred to as the divisor being able to divide the

number. Until this event occurs, 0s are placed in the quotient from

left to right. When the event occurs, a 1 is placed in the quotient and

the divisor is subtracted from the partial dividend. The result is

referred to as a partial remainder. The division follows a cyclic

pattern. At each cycle, additional bits from the dividend are

appended to the partial remainder until the result is greater than or

equal to the divisor. The divisor is subtracted from this number to

produce a new partial remainder. The process continues until all the

bits of the dividend are exhausted.

 Shift Left

An An-1 ………… A0 Qn-1 ………… Q0

 Add / Subtract
Control Unit

N+1 Bit

Adder

• Mn-1 ………… M0 Divisor

Fig.: Block Diagram of Division Operation

Algorithm:
Step 1: Initialize A, Q and M registers to zero, dividend and divisor respectively and counter to n

where n is the number of bits in the dividend.
Step 2: Shift A, Q left one binary position.

Step 3: Subtract M from A placing answer back in A. If sign of A is 1, set Q0 to zero and add M

back to A (restore A). If sign of A is 0, set Q0 to 1.
Step 4: Decrease counter; if counter > 0, repeat process from step 2 else stop the process. The
final remainder will be in A and quotient will be in Q.

 Example: Divide 15 (1111) by 4 (0100)

 A Q M M +1 Count Remarks

 00000 1111 00100 11100 4 Initialization

 00001 111□ - - - Shift Left A, Q

 1 1101 111□ - - - Sub (A
ß

 A – M)

 00001 111 0 - - 3 Q0
ß

 0, Add (A
ß

 A + M)

 00011 110□ - - - Shift Left A, Q

 1 1111 110□ - - - Sub (A
ß

 A – M)

Q0
ß

 0, Add (A
ß

 A + M)

 00011 110 0 - - 2

 00111 100□ - - - Shift Left A, Q

 0 0011 100□ - - - Sub (A
ß

 A – M)

Set Q0
ß

 1

 00011 100 1 - - 1

 00111 001□ - - - Shift Left A, Q

 0 0011 001□ - - - Sub (A
ß

 A – M)

Set Q0
ß

 1

 00011 001 1 - - 0

Quotient in Q = 0011 = 3
Remainder in A = 00011 = 3

Non – Restoring Division (Signed Binary Division)

Algorithm
Step 1: Initialize A, Q and M registers to zero, dividend and

divisor respectively and count to number of bits in
dividend.

Step 2: Check sign of A;

If A < 0 i.e. bn-1 is 1
q Shift A, Q left one binary position.
r Add content of M to A and store back in A.

q Shift A, Q left one binary position.

r Subtract content of M to A and store back in A.

Step 3: If sign of A is 0, set Q0 to 1 else set Q0 to 0.
Step 4: Decrease counter. If counter > 0, repeat process from step 2 else go to step
5.

Step 5: If A ≥ 0 i.e. positive, content of A is remainder else add content of M to A to get the
remainder. The quotient will be in Q.

 Start

 Initialize: A
ß

 0, M
ß

 Divisor,

Q
ß

 Dividend, Count
ß

 No. of bits of Q

No

Is
Yes

Left Shift AQ A < 0 Left Shift AQ

 ?

A
ß

A+M A
ß

A-M

No

Is

Yes

Q0

ß
1 A < 0 Q0 ß 0

 ?

 Count
ß

 Count - 1

Yes

Is

Count > 0

 ?

 No

Yes

Is
No

A > 0 A
ß

A+M

 ?

 Quotient in Q

Stop
Remainder in A

 Example: Divide 1110 (14) by 0011 (3) using non-restoring division.

 A Q M M +1 Count Remarks

 0 0000 1110 00011 11101 4 Initialization

 00001 110□ - - - Shift Left A, Q

 1 1110 110□ - - - Sub (A
ß

 A – M)

 1 1110 110 0 - - 3 Set Q0 to 0

 11101 100□ - - - Shift Left A, Q

 0 0000 100□ - - - Add (A
ß

 A + M)

 0 0000 100 1 - - 2 Set Q0 to 1

 00001 001□ - - - Shift Left A, Q

 1 1110 001□ - - - Sub (A
ß

 A – M)

 1 1110 001 0 - - 1 Set Q0 to 0

 11100 010□ - - - Shift Left A, Q

 1 1111 010□ - - - Add (A
ß

 A + M)

 1 1111 010 0 - - 0 Set Q0 to 0

 00010 0100 - - - Add (A
ß

 A + M)

Quotient in Q = 0011 = 3

Remainder in A = 00010 = 2

Floating Point Representation
The floating point representation of the number has two parts. The first part represents a signed
fixed point numbers called mantissa or significand. The second part designates the position of

the decimal (or binary) point and is called exponent. For example, the decimal no + 6132.789 is
represented in floating point with fraction and exponent as follows.
Fraction Exponent
+0.6132789 +04

This representation is equivalent to the scientific notation +0.6132789 × 10
+4

The floating point is always interpreted to represent a number in the following form ±M × R
±E

.

Only the mantissa M and the exponent E are physically represented in the register (including
their sign). The radix R and the radix point position of the mantissa are always assumed.

A floating point binary no is represented in similar manner except that it uses base 2 for the
exponent.
For example, the binary no +1001.11 is represented with 8 bit fraction and 0 bit exponent as
follows.

0.1001110 × 2
100

Fraction Exponent
01001110 000100
The fraction has zero in the leftmost position to denote positive. The floating point number is

equivalent to M × 2
E

 = +(0.1001110)2 × 2
+4

Floating Point Arithmetic
The basic operations for floating point arithmetic are
Floating point number Arithmetic Operations

X = Xs × B
XE

X + Y = (Xs × B
XE-YE

 + Ys) × B
YE

Y = Ys × B
YE

X - Y = (Xs × B
XE-YE

 - Ys) × B
YE

 X * Y = (Xs × Ys) × B
XE+YE

 X / Y = (Xs / Ys) × B
XE-YE

There are four basic operations for floating point arithmetic. For addition and subtraction, it is

necessary to ensure that both operands have the same exponent values. This may require shifting

the radix point on one of the operands to achieve alignment. Multiplication and division are
straighter forward.
A floating point operation may produce one of these conditions:

� Exponent Overflow: A positive exponent exceeds the maximum possible exponent value.
� Exponent Underflow: A negative exponent which is less than the minimum possible

value.
� Significand Overflow: The addition of two significands of the same sign may carry in a

carry out of the most significant bit.
Significand underflow: In the process of aligning significands, digits may flow off the right end of
the significand.

Floating Point Addition and Subtraction
In floating point arithmetic, addition and subtraction are more complex than multiplication and
division. This is because of the need for alignment. There are four phases for the algorithm for
floating point addition and subtraction.

o Check for zeros:
Because addition and subtraction are identical except for a sign change, the process
begins by changing the sign of the subtrahend if it is a subtraction operation. Next; if one
is zero, second is result.

p Align the Significands:
Alignment may be achieved by shifting either the smaller number to the right
(increasing exponent) or shifting the large number to the left (decreasing exponent).

q Addition or subtraction of the significands:

The aligned significands are then operated as required.

r Normalization of the result:
Normalization consists of shifting significand digits left until the most significant bit
is nonzero.

Example: Addition

X = 0.10001 * 2
110

Y = 0.101 * 2
100

Since EY < EX, Adjust Y

Y = 0.00101 * 2
100

 * 2
010

 = 0.00101 * 2
110

So, EZ = EX = EY = 110
Now, MZ = MX + MY = 0.10001 + 0.00101 = 0.10110

Hence, Z = MZ * 2
EZ

 = 0.10110 * 2
110

Example: Subtraction

X = 0.10001 * 2
110

Y = 0.101 * 2
100

Since EY < EX, Adjust Y

Y = 0.00101 * 2
100

 * 2
010

 = 0.00101 * 2
110

So, EZ = EX = EY = 110
Now, MZ = MX - MY = 0.10001 - 0.00101 = 0.01100

Z = MZ * 2
EZ

 = 0.01100 * 2
110

 (Un-Normalized)

Hence, Z = 0.1100 * 2
110

 * 2
-001

 = 0.1100 * 2
101

Start

Is

X==0 Z
ß

Y

?

Stop

Is

Y==0 Z
ß

X

?

 EX<EY Check EY<EX

Adjust X such that: Adjust Y such that:
EZ=EX=EY the exponent EZ=EX=EY

 ?

EY=EX

 Adjust the Mantissa

MZ=MX±MY

Form the floating
point number

Z=MZ*2
EZ

Is

No

Post Normalize ½≤MZ<1

?

Yes

Stop

Floating Point Multiplication
The multiplication can be subdivided into 4 parts.

• Check for zeroes.

• Add the exponents.

• Multiply mantissa.

• Normalize the product.

Example:

X = 0.101 * 2
110

Y = 0.1001 * 2
-010

As we know, Z = X * Y = (MX * MY) * 2
(EX + EY)

Z = (0.101 * 0.1001) * 2
(110-010)

= 0.0101101 * 2
100

= 0.101101 * 2
011

 (Normalized)

0.1001
0.101

1001
0000*

+1001**
101101 = 0.0101101

Floating Point Division
The division algorithm can be subdivided into 5 parts

• Check for zeroes.

• Initial registers and evaluates the sign.

• Align the dividend.

• Subtract the exponent.

• Divide the mantissa.

Example:

X = 0.101 * 2
110

Y = 0.1001 * 2
-010

As we know, Z = X / Y = (MX / MY) * 2
(EX

–

EY)

MX / MY = 0.101 / 0.1001 = (1/2 + 1/8) / (1/2 + 1/16) = 1.11 = 1.00011 0.11
* 2 = 0.22 0
0.22 * 2 = 0.44 0

0.44 * 2 = 0.88 0

0.88 * 2 = 1.76 1

0.76 * 2 = 1.52 1
EX – EY = 110 + 010 = 1000

Now, Z = MZ * 2
EZ

 = 1.00011 * 2
1000

 = 0.100011 * 2
1001

5.5 Logical Operation

Gate Level Logical Components

Composite Logic Gates

